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My perspective 
 Statistical/scientific reviewer of NCI-

sponsored clinical trials and studies for 
development and validation of biomarker-
and omics-based tests  

 Scientific Advisory Board (Science 
Translational Medicine) and Editorial Board 
(BMC Medicine) 

 Statistical reviewer for numerous biomedical 
journals 

 Statistical collaborator in research projects 
involving biomarkers and omics tests 
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Disclaimers 
 The views expressed represent my own 

and do not necessarily represent views or 
policies of the National Cancer Institute. 

 Examples I cite are all based on true 
stories or published articles, but I have 
made minor modifications in some cases 
to protect identities. 
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OUTLINE 
 Background & definitions 
 NCI checklist for readiness of omics-

based test to be used in a clinical trial 
(with emphasis on role of statisticians) 
• Specimens 
• Assays 
• Model development, specification & 

preliminary performance evaluation 
• Clinical trial design 
• Ethical, legal, and regulatory 

 Summary remarks 
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Working definitions 
 Biomarker 

• http://www.cancer.gov/dictionary:  “Biological 
molecule found in blood, other body fluids, or 
tissues that is a sign of a normal or abnormal 
process, or of a condition or disease.”  

 Omics 
• http://www.iom.edu/Reports/2012/Evolution-

of-Translational-Omics.aspx 
 “A term encompassing multiple molecular 

disciplines, which involve the characterization 
of global sets of biological molecules such as 
DNAs, RNAs, proteins, and metabolites.”  

Note:  Throughout this talk, biomarkers and omics-based tests will be 
treated as binary-valued and the two terms will sometimes be used 
interchangeably for purposes of explaining concepts.   6 

http://www.cancer.gov/dictionary
http://www.iom.edu/Reports/2012/Evolution-of-Translational-Omics.aspx
http://www.iom.edu/Reports/2012/Evolution-of-Translational-Omics.aspx


Illumina SNP bead array 

Affymetrix expression GeneChip 

MALDI-TOF proteomic spectrum 

cDNA expression microarray 

Mutation sequence surveyor trace 

Many examples of omics assays for 
characterization of biological samples 
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Translation from omics discoveries to 
clinically useful omics-based tests 

Discovery 

Clinical 
Utility? 8 

High-throughput omics assays 

Computational models Predictors, classifiers, 
risk scores 



Paradigm for development of a clinically 
useful omics-based test 

Discovery 

Clinical utility 
Use of the test results in a favorable 

benefit to risk ratio for the patient 
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Clinical validity 
The test result shows 
an association with a 
clinical outcome of 

interest. 

Analytical validity 
The test’s performance 

is established to be 
accurate, reliable, and 

reproducible. 

Teutsch et al, Genet Med 2009;11:3-14 
Simon et al, J Natl Cancer Inst 2009;101:1446-1452 
McShane & Hayes, J Clin Oncol 2012;30:4223-4232 



It takes a collaborative  team to go from 
discovery to clinically useful omics test 

Discovery 

Clinical utility 
10 

Clinical validity Analytical validity 

Computational 
scientists 

Laboratory 
scientists 

Bioinformaticians 

Clinicians Statisticians 



Criteria for the use of omics-
based predictors in clinical trials 

 Focus:  Tests based on potentially complex 
mathematical models incorporating large 
numbers of measurements from omics assays 

 Goals: 
• Make omics test development more efficient, reliable, 

and transparent 
• Avoid premature clinical  implementation of tests 
 

Institute of Medicine Translational Omics Report: 
http://www.iom.edu/Reports/2012/Evolution-of-Translational-
Omics.aspx 

30-point checklist: 
McShane et al, Nature 2013;502:317-320 
McShane et al, BMC Medicine 2013;11:220 11 

http://www.iom.edu/Reports/2012/Evolution-of-Translational-Omics.aspx
http://www.iom.edu/Reports/2012/Evolution-of-Translational-Omics.aspx


Omics checklist divided into 5 domains 

 Specimens 
 Assays 
 Model development, specification & 

preliminary performance evaluation 
 Clinical trial design 
 Ethical, legal, and regulatory 
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Domain 1: Specimens 

 Collection, processing & storage 
 Specimen quality screening 
 Minimum required amount 
 Feasibility of collecting needed 

specimens 
• Achievable in standard clinical settings 
• Study/sample size planning 
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Domain 1: Specimens example 
 Statisticians can provide guidance in 

planning feasibility assessments and 
quality monitoring schemes to avoid 
disasters 
Example:   
• Analysis of first 100 biological specimens 

collected in a large diagnostic study 
showed that only 20% were of adequate 
quality to be analyzable by the assay 

• Problem traced to failure to promptly freeze 
the specimens after collection 
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Domain 2:  Assays 
 Impact of changes in assay procedures 
 Lock down SOP 
 Quality criteria for assay values 

• Bad specimens, batch effects, equipment 
malfunction 

 Analytical performance evaluation 
Pennello, Clinical Trials 2013;10: 666–676 
Jennings et al, Arch Pathol Lab Med 2009;133: 743–755 

 Quality monitoring 
 Turnaround time 
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Domain 2: Assay example 
 Assess impact of changes in any assay 

procedures, reagents, or equipment 
Example:   
Dramatic effect of change in RNA extraction 
procedure on tumor gene expression microarray 
profiles, additional minor effect due to reagent 
changes by microarray manufacturer 

Extraction method 1 Extraction method 2 

215 tumor samples 

116 genes 
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Domain 3:  Model development & 
evaluation 

 Quality of data (clinical & omics) 
used to develop and validate 
predictor models 
 Appropriate statistical approaches 

for model development and 
performance assessment  
 Intended use - data from clinically 

relevant patient population 
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Domain 3:  Data quality & batch effects 

Red = batch 1 
Blue = batch 2 
Purple & Green = outliers?  

Density estimates of PM probe intensities (Affymetrix CEL files) for 96 NSCLC specimens 

(Owzar et al, Clin Cancer 
Res 2008;14:5959-5966) 

Batch effects for 2nd generation 
sequence data (stand. coverage 
data). 
Same facility & platform.   
Horizontal lines divide by date. 

(Leek et al, Nature Rev Genet 
2010;11:733-739) 

BATCH EFFECTS ARE ESPECIALLY PROBLEMATIC IF 
CONFOUNDED WITH KEY EXPERIMENTAL FACTORS 
OR ENDPOINTS. 18 



Domain 3:  Dangers of overfitting 

 A statistical model is OVERFIT when 
it describes random error (noise) 
instead of the true underlying 
relationship 
• Excessively complex (too many 

parameters or predictor variables ) 
• Generally has poor predictive 

performance on an independent data 
set 
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Domain 3:  Failure to detect overfitting 

 RESUBSTITUTION is the naïve 
practice of evaluating performance of 
a model by “plugging in” exact same 
data used to build it 
• Seriously biased estimates of predictor 

performance 
• Overfitting will not be detected 
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Domain 3:  Avoid overfitting & resubstitution 

• Goal:  Develop prognostic 
signature from gene 
expression microarray data 

• Survival data on 129 lung 
cancer patients (prior study) 

• Expression values for 5000 
genes generated randomly 
from N(0, I5000)  (“noise”) for 
each patient 

• Data divided randomly into 
training and validation sets 

• Prognostic model developed 
from  training set and used to 
classify patients in both 
training and validation sets 
(supervised principal 
components method) 

(Subramanian & Simon, J Natl Cancer 
Inst 2010;102:464-474) 

Simulation of bias in 
resubstitution estimates 
of predictor performance 
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Domain 3:  Detection and 
avoidance of model overfitting 

 Internal validation by use of data 
resampling techniques 
• Split sample (training & test sets) 
• Cross-validation 
• Bootstrapping 
Molinaro et al, Bioinformatics 2005;21:3301-3307 

 External validation 
• Assessment of predictor performance on a 

completely independent data set 
 Model regularization techniques reduce, but 

don’t completely eliminate overfitting 
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Domain 3:  Subtle forms of model 
overfitting 

 Partial resubstitution 
 Combining training and test sets 
 Resubstitution with covariate adjustment 
 Resubstitution comparison 

Simon et al, J Natl Cancer Inst 2003;95:14-18 
Subramanian & Simon, J Natl Cancer Inst 2010;102:464-474 
Simon & Freidlin, [Correspondence] J Natl Cancer Inst 
2012;103(5):445 
Subramanian & Simon, Contemporary Clinical Trials 
2013;36:636–641 
McShane & Polley, Clinical Trials 2013;10:653-665 
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Number of misclassifications
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Correct average # 
of misclassifications 

Large spread 

Domain 3:  Avoid partial resubstitution 

Simon et al, J Natl Cancer Inst 2003;95:14-18 

Simulation experiment:  20 specimens; expression 
levels of 6000 genes randomly generated (Gaussian 
noise); arbitrary split of specimens into two groups of 10 

Prediction Method: 
• Compound covariate  
• Use 10 most 

differentially 
expressed genes to 
build classifier 

• Calculate number of 
misclassifications 

Repeat simulation 
2,000 times 
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Domain 3:  Avoid combining training & 
test sets 

Variable HR 95% CI P 
Genomic score 2.43 1.94 – 3.06 < 0.001 
Stand. molec. factor 1 1.77 1.41 – 2.22 < 0.001 
Stand. molec. factor 2 0.66 0.48 – 0.93 0.02 
Age group, ≥ 60 yrs 
vs < 60 yrs 

2.22 1.76 – 2.79 < 0.001 

Multivariable Model for Overall Survival 
(Training and Test sets combined) 

Combining Training data (used to develop genomic score) 
with Test data destroys the validation and interpretability of 
the adjusted effects 
 
Nowhere in the paper was a multivariate analysis 
based solely on the Test set presented. 
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Domain 3:  Avoid comparisons with 
resubstitution estimates 

Prognostic classifier fit using gene 
expression microarray data from 
clinical trial arm on which patients 
received no adjuvant chemotherapy 
(resubstitution) 

Does the genomic predictor identify groups of patients 
who benefit differently from adjuvant chemotherapy? 
Can’t conclude anything. 

HIGH risk NO CHEMO 

CHEMO 
CHEMO 

LOW risk 

NO CHEMO 

HR=0.33 (0.17-0.63), p<0.001 HR=3.67 (1.22-11.06), p=0.013 

(n=36) 

(n=31) 

(n=31) 

(n=35) 

LOW risk 

HIGH risk 

HR=15.02 (5.12-44.04), p<0.001 

(n=31) 

(n=31) 
Simon & Freidlin, [Correspondence] J 
Natl Cancer Inst 2012;103(5):445 
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Domain 3:  Requirements for a 
rigorous validation of a predictor 

 The predictor to be tested must be completely LOCKED DOWN and 
there must be a PRE-SPECIFIED PERFORMANCE METRIC. The 
lockdown includes all steps in the data pre-processing and 
prediction algorithm. 

 The INDEPENDENT VALIDATION DATA should be generated from 
specimens collected at a different time, or in a different place, and 
according to the pre-specified collection protocol. 

 Assays for the validation specimen set should be run at a different 
time or in a different laboratory but according to the IDENTICAL 
ASSAY protocol as was used for the training set. 

 The individuals developing the predictor must remain completely 
BLINDED to the validation data. 

 The validation DATA SHOULD NOT BE CHANGED based on the 
performance of the predictor. 

 The PREDICTOR SHOULD NOT BE ADJUSTED after its 
performance has been observed on any part of the validation data. 
Otherwise, the validation is compromised and a new validation may 
be required. 
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Domain 3:  Fully-specified “locked 
down” predictor 

 Need all of the following: 
• List of individual variables 
• Data pre-processing steps (e.g., 

normalization/standardization of raw 
data) 

• Equation/algorithm to make predictions 
• Produces same or highly similar result 

when same data are input multiple times 
• Predictor can be applied one case at a 

time 

28 



Domain 3:  Examples of 
predictors not locked down 

 Example #1:  List of variables (e.g., genes, 
proteins) with no indication of how to combine 
the variables 

 Example #2:  Data pre-processing using data 
from a collection of specimens (e.g., each 
gene expression value is standardized across 
a collection of cases as z = (𝑥 − �̅�)/𝑠) 

How to pre-process data from a single new case? 
Need to lock down pre-processing parameters or 
use reference set. 

29 



Domain 3:  Examples of 
predictors not locked down (cont.) 

 Example #3:  Use of ranks or percentiles 
• Linear combination scores computed on training 

set and classified using median score for the 
training set as cutpoint for classification of the 
training set cases 

• Linear combination scores computed on test set 
and classified using median score for the test set 
as cutpoint for classification of the test set 

 
Cutpoint may shift from data set to set due to 
assay batch or cohort effects. 
How is a single new case classified? 

 30 



Domain 3:  Example of predictors 
not locked down (cont.) 

 Example #4:  “Black-box” computer programs 
that produce varying predictions when run 
multiple times on same data 
• Stochastic model averaging methods 
• Methods that employ clustering methods with 

random initial centroids (e.g., some 
implementations of K-means clustering)  
Example: Same data from ≈100 cases input twice, 20% 
chance of flipping (low/high risk) prediction from run to run 

Either varying aspects must be locked (e.g., 
fix random number seed), or it must be 
established that variation across repeat runs 
is minimal. 
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Domain 4:  Clinical trial design 
 Clear intended use with clinical utility 
 Is a prospective trial needed, and if so, 

what design? 
 Protocol with clear objectives, design, 

statistical analysis plan, locked down 
predictor 
 Secure database 
 Responsible individuals named 

32 



Domain 4:  Clinical use – Prognostic 
 Associated with clinical outcome in 

absence of therapy (natural course) or 
with  standard therapy all patients are 
likely to receive 

 Not always relevant for therapy decisions 

33 

Good prognosis group may 
forego additional therapy 

Is this prognostic 
information helpful ? 



Domain 4:  Clinical use – Predictive 

 Associated with benefit or lack of 
benefit (potentially even harm) from a 
particular therapy relative to other 
available therapy 
• Alternate terms:  treatment-selection, 

treatment-guiding, treatment effect 
modifier 

 Generally more useful than prognostic 
biomarkers for therapeutic decision 
making 

Polley et al, J Natl Cancer Inst 2013;105:1677-1683 
McShane & Polley, Clinical Trials 2013; 10: 653-665 
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Domain 4:  Prognostic vs. predictive  
Importance of control groups 

New treatment for 
all or for sensitive 
only 

No survival benefit 
from new treatment 

Prognostic 
but not 
predictive 

Prognostic 
and 
predictive 
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Domain 4:  Statistical language for 
predictive biomarkers 

Treatment-by-biomarker interaction 

 Treatment effect (e.g., hazard ratio) 
varies by biomarker status 
• QUANTITATIVE interaction: 

Treatment benefits all patients but by 
different amounts 

• QUALITATIVE interaction:  Patients 
“positive” for the biomarker benefit 
from the treatment while others receive 
no benefit or possibly even harm 

36 



Domain 4:  More on predictive tests 
Quantitative versus qualitative interaction 

Quantitative interaction 
Both “sensitive” and “insensitive” 
subgroups benefit from new 
therapy, but by different amounts 

37 

Qualitative interaction 
“Sensitive” subgroup has better 
outcome on new therapy 
compared to standard, but 
“insensitive” subgroup has better 
outcome on standard therapy. 



Domain 4:  Clinical trial design 
 Main types of prospective designs 

• Biomarker-Enrichment 
• Biomarker-Strategy 
• Biomarker-Stratified 
Sargent D et al. J Clin Oncol 2005;23:2020-2027 
Freidlin B et al., J Natl Cancer Inst 2010;102:152-160 
Clark G & McShane L, Stat Biopharm Res 2011;3:549-560 

 Prospective-retrospective design 
• Use of stored specimens from a completed 

prospective trial 
• Clear pre-specified study objectives 
• Rigorous statistical design & analysis plans 
Simon et al, J Natl Cancer Inst 2009;101:1446-1452 
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Domain 5:  Ethical, legal, and 
regulatory issues 

 Informed consent discloses 
investigational use, risks, potential COIs 
 Intellectual property 
 Requirements for tests to be performed 

in CLIA-certified laboratory 
 Determine if investigational device 

exemption (IDE) is required from FDA 
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Case study: Serum proteomic test to 
guide us of EGFR-TKI therapy  for 

patients with lung cancer 
 Patients with advanced non-small cell lung cancer 

typically have poor outcome with standard 
chemotherapies 

 Some new drugs have been designed to be effective 
against tumors that have alterations in the EGFR gene 
(EGFR-TKIs) 

 Determination of whether a tumor has an EGFR 
alteration has traditionally required obtaining a biopsy 
of the tumor 

 A serum proteomic test, if proven reliable, could avoid 
the need for tumor biopsy to evaluate likelihood of 
sensitivity to EGFR-TKIs 

Taguchi et al, J Natl Cancer Inst 2007;99:838-46 40 



Model development for serum 
proteomic test  

 Serum collected from NSCLC patients before 
treatment with gefitinib or erlotinib  (EGFR-TKIs) 

 Analysis by MALDI-MS 
 K-nearest neighbor (KNN) algorithm based on 8 

distinct m/z features classifies into good or poor 
outcome 

 Training set:  n=139 NSCLC patients total from 3 
cohorts who received gefitinib 

 Preliminary validation cohorts:   
• “Italian B”:  n=67 sequential patients, late-stage or recurrent 

NSCLC treated with single-agent gefitinib 
• ECOG 3503:  n=96 advanced NSCLC patients treated with 

first-line erlotinib on single arm Phase II study 

41 



Initial assessment of serum proteomic test 
Preliminary results for patients treated with EGFR-TKIs   

“Italian B”:  n=67 sequential 
patients, late-stage or recurrent 
NSCLC treated with single-
agent gefitinib 
HR*=0.50, 95% CI=(0.24,0.78), 
p=0.0054 
Median OS  
Good:  207 days  Poor:  92 days 

ECOG 3503:  n=96 advanced 
NSCLC patients treated with first-line 
erlotinib on single arm Phase II study 
HR*=0.4, 95% CI=(0.24,0.70), 
p<0.001 
Median OS  
Good:  306 days  Poor:  107 days 

In addition, proteomic test shown to have good 
analytical reproducibility across 2 labs 
*HR for Good:Poor 42 



Serum proteomic test: 
Predictive or prognostic?   

Does test also separate, by outcome, patients who 
did NOT receive EGFR-TKIs (control cohorts)? 

“Italian C”:  n=32 patients, stage IIIA-IV 
NSCLC treated with second-line chemotherapy 
HR*=0.74, 95% CI=(0.33,1.6), p=0.42 

“VU”:  n=61 patients, advanced NSCLC 
treated with second-line chemotherapy 
HR*=0.81, 95% CI=(0.4,1.6), p=0.54 

“Polish”:  n=65 patients, stage IA-IIB NSCLC 
treated with second-line chemotherapy 
HR*=0.90, 95% CI=(0.43,1.89), p=0.79 
SAME TREND (HR<1) as in EGFR-TKI 
treated, but not significant 

SAME TREND (HR<1) as in EGFR-
TKI treated, but not significant 

SAME TREND (HR<1) as in EGFR-
TKI treated, but not significant 

*HR for Good:Poor 43 



Another look at 
prognostic vs. predictive  

 If prognostic effect of predictor, good:poor 
(SENS:INSENS), is different between new and standard 
therapy settings, then there is an interaction but not 
necessarily qualitative.   

 Further, if treatment is not randomized it may be difficult 
to conclude anything. 
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Randomized phase III trial (PROSE) to 
evaluate ability of serum proteomic test 

to predict benefit from EGFR-TKIs  
 Test predictive value of the proteomic test  
 Primary endpoint overall survival (OS) 
 Powered for treatment x proteomic test 

interaction (biomarker-stratified design) 
 Eligibility 

• Stage IIIB or IV NSCLC 
• ≥ 18 years old 
• Refractory to one prevision platinum-containing 

regimen 
 Exclusions 

• Previously received an EGFR-TKI 
• Uncontrolled brain metastases 
• Other cardiac, renal, etc. conditions 

 Gregorc et al, Lancet Oncol 2014;15:713-721 45 



PROSE trial results for overall survival 

Test result 
Treatment Good Poor 
Chemo 10.9 6.4 
Erlotinib 11.0 3.0 
Hazard 
ratio* 
(95% CI) 

1.06 
(0.77-
1.46) 

1.72 
(1.08-
2.74) 

Median Overall Survival (mos.) 

Interaction p=0.017 
*HR for Erlotinib:Chemo 

Not even a trend for better outcome with 
erlotinib in the “good” group. 
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PROSE trial results for 
progression-free survival 

Test result 
Treatment Good Poor 
Chemo 4.8 2.8 
Erlotinib 2.5 1.7 
Hazard 
ratio* 
(95% CI) 

1.26 
(0.94-
1.96) 

1.51 
(0.96-
2.38) 

Median Progression-Free 
Survival (mos.) 

Interaction p=0.445 
*HR for Erlotinib:Chemo 

Not even a trend for better outcome with 
erlotinib in the “good” group. 
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PROSE trial results 

Conclusion drawn by authors: 
“Serum protein test status is predictive of 
differential benefit in overall survival for 
erlotinib versus chemotherapy in the 
second-line setting. Patients classified as 
likely to have a poor outcome have better 
outcomes on chemotherapy than on 
erlotinib.”  
(Gregorc et al, Lancet Oncol 2014;15:713-721) 

48 

Is this consistent with the pre-validation? 
Was this the pre-specified hypothesis? 
How would this be used clinically? 



Summary remarks 

 Scientific teams that develop omics tests 
should include individuals with statistical 
expertise 
 Statisticians have responsibility to 

engage in the scientific process and not 
naively churn out statistical analyses 
 Best practices expected for therapeutics 

development should be applied to 
development of omics tests that will 
guide clinical decisions for patients 

49 



THANK YOU! 
lm5h@nih.gov 
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